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Summary 

 Ueda and Moreno (2017) formulate a reliable and robust frequency based 

on the binomial probability distribution. On this occasion, we present its 

mathematical foundations along with its applications to the Spanish diachronic 

data. 

 In corpus linguistics, it is usual practice to obtain two-dimensional 

frequency tables that group the linguistic forms and their variation through the 

attribute (time, space, style, etc.). This data is obtained by a multiple search 

(several forms simultaneously) with various attributes (for example, years or 

geographical areas). The presentation of the quantitative data is usually offered in 

the form of absolute frequency (AF) with the addition of relative frequency (RF) 

or normalized frequency (NF) to ensure the feasibility of comparison. However, 

neither the relative frequency nor the normalized frequency is adequate to 

compare the figures with very different bases or small bases, as needed. For 

example, 3 out of 3 (RF: 100%) presents the figure higher than 8 out of 12 (RF: 

66.7%), although we intuit that the probability of 3 out of 3 is less important than 

that of 8 out of 12, and much less important than that of 80 out of 120. 

 To deal with the problem of lack of reliability and comparability in 

absolute (AF), relative (RF) and normalized frequencies (NF), we have 

introduced the concept of binomial probability to calculate "probabilistic 

frequency" (PF). To get this frequency, first, the expected probability (e) is 

calculated from the absolute frequency (x), the basis (n) and the desired security 
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level (s) of, for example, 95% or 99% (with 5% or 1% risk). To illustrate, we 

apply the method of probabilistic frequency to two diachronic questions of the 

Spanish language. First, we analyze the three variant spellings <u>, <b> and <v> 

of the lemma «voz» ('voice'). This case is interesting for the history of the 

language since current Spanish spelling <v> does not represent a labiodental 

consonant: [voθ], but a bilabial: [boθ], unlike other European languages (Ueda 

2018). Next, we discuss combinations of the preposition with the definite article 

in forms of del, dela ('of the'), al, ala ('to the'), etc., of which only del and al have 

been maintained in modern Spanish, unlike other Romance languages (Ueda 

2017). 

1. Introduction1 

 In the scientific studies of natural, social or individual phenomena, it is 

essential to know their frequency to measure their quantitative importance. The 

frequency is distinguished between absolute (AF) and relative (RF). In our view, 

the relative frequency should be divided between the partial relative frequency 

(PRF) and the total relative frequency (TRF). With the partial relative frequency, 

we refer to the proportion that an element occupies within the sum of treated 

items, for example, the percentage of the Spanish masculine form of the singular 

definite article within the five alternative forms: el, los, la, las, lo ('the'). On the 

other hand, if we are interested in the frequency of the English pronoun we, in a 

corpus of political propaganda, compared to other types of documents, we resort 

to the total relative frequency, which is relativized within the totality of all words 

used in each document. Usually, the same base of one thousand words or one 

million words is used. 

 In this study, we use the term "relative frequency" (RF) for partial 

relative frequency and "normalized frequency" (NF) for total relative frequency 

(TRF)2. We believe that this distinction is essential since the relative frequency 

(RF) is the proportion that the element in question occupies within a selected 

 
1  We thank José Antonio Jiménez Millán, University of Cádiz, Leonardo 

Campillos, Consejo Superior de Investigaciones Científicas (CSIC), and Hiroshi 

Kurata, University of Tokyo, for their help in the preparation of this study from 

their speciality in physics and computer science, natural language processing, and 

mathematical statistics, respectively. 
2 For 'normalisation', see Evison (2012: 126). McEnery and Hardie (2012: 49) 

treat equally 'normalized frequency' and 'relative frequency'. 
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group, with a limited range of 0 to 1 ([0, 1]). In contrast, the normalized 

frequency (NF) is referred to as the quantitative magnitude appreciated within a 

population of one thousand or one million words.  

 Both frequencies have a common characteristic, which is the division by 

the sum of the frequencies of the selected group (RF), or of the totality of the 

corpus (NF), which causes a severe problem when comparing the numerical 

magnitudes, as we will see in the next section 2. We will solve it in the form of 

probabilistic frequency (PF) in section 3. 

2. Three types of word frequency 

 Let us observe the actual data of the absolute frequency (AF) of the three 

forms with spelling variation, uoz, voz, boz, in 50-year time sequences from 1200 

to 14003: 

AF 1200 1250 1300 1350 1400  RF (%) 1200 1250 1300 1350 1400 

uoz 3 8 3 11 6  uoz 100.0  66.7  25.0  21.2  6.4  

boz 0 3 8 18 35  boz 0.0  25.0  66.7  34.6  37.2  

voz 0 1 1 23 53  voz 0.0  8.3  8.3  44.2  56.4  

Sum 3 12 12 52 94  Sum 100.0 100.0 100.0 100.0 100.0 

Table 1: Absolute frequency (AF) and relative frequency (RF) of uoz, boz, voz. 

 The absolute frequencies are not comparable since the sums of the three 

forms are very different in each time range: {3, 12, 12, 52, 94}. For example, the 

number 3 of uoz in 1200 is not directly comparable with the number 8 in 1250. In 

this case, to compare the absolute frequencies on the same basis, researchers 

resort to relative frequency (RF), which is calculated by dividing the absolute 

frequency (AF) by the sum, for example, 3/3 = 1.000, 8/12 = .667. If we multiply 

the relative frequency by 100, we arrive at the percentage: 1.000 * 100 = 100 (%), 

0.667 * 100 = 66.7 (%). 

 However, neither the relative frequency (RF) nor the percentage (%) is 

adequate to compare the figures with very distant or reduced bases. For example, 

3 in 3 (RF: 1.000, 100%) presents the figure higher than 8 in 12 (RF: 0.667, 

66.7%), although we think and intuit that the probability of 3 in 3 is less 

 
3 The table has been obtained on the site of «CODEA in LYNEAL» (GITHE, 

2015), with the selection of Castilla la Vieja region: 

 http://shimoda.lllf.uam.es/ueda/lyneal/codea.htm [11/25/2019] 
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important than that of 8 in 12 and much less important than 80 in 120. We believe 

that the percentage serves to describe the proportion that each case occupies 

within the set. However, it does not serve to compare each case between several 

sets with quite different bases (populations)4. Later (3.1, 3.2, 3.3), we will look 

for the solution to the numerical evaluation problem, typical of the relative 

frequency (RF) and the percentage. 

 Now, let us look at the problem of another type of frequency also used in 

corpus linguistics in general: normalized frequency (NF), which is calculated by 

the division of the absolute frequency (AF) by the totality of words (T) counted in 

each section, multiplied by an appropriate multiplier (m): 

 NF = AF / T * m 

 For example, in the 1200 band of the corpus, 7,736 words have been 

counted, which is a total of words (T). So, the normalized frequency of uoz in 

1200 is 3 / 7,736 * 100 000 = 38.8. We recommend using as a multiplier (m) the 

rounded number (100 000) near the maximum of the base (T): 96,059 (in the data 

set of 1400). We get the lower right table (NF): 

AF 1200 1250 1300 1350 1400  NF. 1200 1250 1300 1350 1400 

uoz 3 8 3 11 6  uoz 38.8  22.2  7.3  16.9  6.2  

boz 0 3 8 18 35  boz 0.0  8.3  19.5  27.7  36.4  

voz 0 1 1 23 53  voz 0.0  2.8  2.4  35.4  55.2  

T 7,736 36,052 40,957 64,999 96,059        

Table 2: Absolute frequency (AF) and normalized frequency (NF) of uoz, boz, voz. 

 However, here the normalized frequency (NF) also presents the same lack 

of comparability in the data of quite different bases, especially with some 

minimal bases. We cannot help but doubt about the NF figure of uoz in 1200, 3 

among 7,736 whose NF is 38.8 compared to the NF in the same way uoz in 1250, 

8 among 36,052, whose NF is 22.2. We wonder if 38.8 is comparable directly 

with 22.2 in NF. 

 The essence of the problem is the same in both the relative frequency 

(RF) and the normalized frequency (NF) in the sense that the two calculate on 

 
4 Wong (2013: 107) recommends not comparing a percentage of the data with a 

different size: "Don't compare percentage changes for two entities that are not 

comparable in size.". 
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very different bases. Paradoxically, the two frequencies (RF, NF) are used 

precisely when the bases are different, since if the bases are equal, it is not 

necessary to resort to these frequencies and, therefore, with the net absolute 

frequency (AF), we can make the numerical comparison perfectly. The problem 

occurs when the bases are considerably different. 

 The problem of the lack of comparability discussed here is solved usually 

by the juxtaposition of absolute and relative (or normalized) frequencies (Table 1, 

2) or by the elimination of the less representative set due to a lack of data  (Wong 

2013: 107). In reality, juxtaposition is not a solution or evaluation but rather an 

exposition or description. In the elimination, for example, in the data of the three 

alternating medieval forms, one would try to exclude the set corresponding to 

1200. It is the general practice in numerical analysis. In the baseball sports world, 

the scores of players with sufficient participation in the matches are calculated. 

Players who do not pass the previously established participation threshold are 

excluded from the evaluation. However, we wonder how the threshold is 

established. We do not know what to do with the 1250 range, where frequencies 

(total: 36,052) are recorded within the base of almost one-third of 1400 (total: 

96,059). 

3. Probabilistic frequency 

 We propose to treat all data without distinction, with standard probability 

criteria. Our purpose is to look for a new type of frequency, "probabilistic 

frequency" (PF), that represents the relative value of the absolute frequency (AF) 

within the set (base) with simple calculations of the probability (Ueda / Moreno 

Sandoval. 2017). To prove it, we resort to binomial probability. The path to get to 

know the probabilistic frequency goes through the following three previous steps: 

(1) security (s), (2) expected probability (e) and (3) multiplier (m). 

3.1. Security 

 We know that, for example, a player who has scored 28 goals in 100 

games is more "important" and he has contributed more to the team than the other 

who has scored 3 goals in 10 games, although the f irst goal ratio (28 / 100 = 28%) 

is less than the second (3/10 = 30%). For the degree of importance, we use the 

concept of "security" (s). We start from a few simple and special cases to arrive at 

the case applicable to frequencies in general. 
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 For calculating the security (s), we use the binomial probability5. To 

understand it, we start with some examples as simple as a coin  toss, where each 

face has the expected probability (e) of 0.5 (50%). 

 The following table shows the probabilities of two events (x = 0, 1) of a 

coin toss (number of trials, n = 1): obverse (x = 1), with value of 1, or reverse, 

with value of 0 (x = 0). Each event's expected probability (e) is 0.5 since there are 

two possibilities of the same probability: obverse or reverse. In Table 3, each 

event comes with its own occurrence probability (O), which we have just seen, 

cumulative probability (C), which is accumulated with each corresponding 

occurrence probability and security (s = S(x, 1, 0.5)): 

X Case O(x, 1, 0.5) C(x, 1, 0.5) S(x, 1, 0.5) 

x: 0  (0) 1/2 = 0.5 0.5 0 

x: 1  (1) 1/2 = 0.5 0.5 + 0.5 = 1.0 0.5 

Table 3: Security (s) in one trial (n = 1). 

 The occurrence probability column (O) shows in the first row the 

probability of reverse (x = 0), with O(0, 1, 0.5) = 1/2 = 0.5 and, in the second row, 

the obverse (x = 1) with O(1, 1, 0.5) = 1/2 = 0.5. The cumulative probability (C) 

of x = 0, C(0, 1, 0.5), is 0.5, which is equal to O(0, 1, 0.5), and that of x = 1, C(1, 

1, 0.5), is 1.0, which is the sum of O(0, 1, 0.5) = 0.5 and O(1, 1, 0.5) = 0.5. The 

last cumulative probability (C) is always 1.000. 

 Now, we define the “security” (s) as corresponding to the cumulative 

probability (C) of x - 1: 

 s = S(x, n, e) = C(x - 1, n, e) 

 (x: occurrence; n: trials; e: expected probability) 

 The security (s) of x = 0, we define it as 0, because there is no cumulative 

probability (C):  

 S(0, n, e) = 0 

which means that there is 100% risk probability in occurring x = 0 and x = 1. 

 
5 . We have consulted the method of binomial test (Ichihara 1990: 18-21; 

Kiyokawa 1990: 94-95). For the binomial probability distribution, see, for 

example, Bishir and Drewes (1970: 510-523) and Fleming and Nellis (1994: 

93-102). 
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 We consider security (s) as the cumulative probability of the occurrence 

of the immediately preceding case because the sum of the probabilities of the 

corresponding occurrence and superior cases corresponds to the risk probability. 

If we toss a coin, the security of the occurrence of 1 (obverse) is 0.5, which is 

complementary to the risk (not obverse, that is, reverse), which is also 0.5. 

Therefore, security + risk = 1, which means that there is 0.5 (50%) security of the 

appearance of the obverse, and there is a 0.5 (50%) risk (reverse) in the case of 

S(1, 1, 0.5). In other words, if we bet on the appearance of the obverse, there is a 

50% risk (and 50% security), which we know and intuit without resorting to the 

theory of probability. 

 So far, we have seen a straightforward case in which we throw the coin 

only once. What happens if we throw the same coin twice? The following table 

shows the distribution of occurrence probability (O) presented in two trials of 

tossing a coin (n = 2). There are three possible cases: x = 0, 1, 2, that is, {(0,0)}, 

{(1,0), (0,1)} and {(1,1)}: 

X Case O(x, 2, 0.5) C(x, 2, 0.5) S(x, 2, 0.5) 

x: 0  (0,0) 1/4 = 0.25 0.25 0 

x: 1  (0,1); (1,0)  2/4 = 0.50 0.25 + 0.50 = 0.75 0.25 

x: 2  (1,1) 1/4 = 0.25 0.75 + 0.25 = 1.00 0.75 

Table 4: Security (s) in two trials (n = 2). 

 This time the expected probability (e) of obverse is also 0.5. The 

occurrence probability (O) column shows that the O of 0 obverse occurrences, 

O(0, 2, 0.5), is 0.25 (reverse, reverse) = (0, 0), that is 1 of 4 cases. The total cases 

are 4, because there are 4 following cases: {(0, 0), (0, 1), (1, 0), (1, 1)}. The 

probability of 1 occurrence of obverse, {(obverse, reverse) , (reverse, obverse)}; 

{(1, 0), (0, 1)} is O(2, 2, 0.5) = 0.5 (2 of 4 cases). And finally, the probability of 2 

occurrences of obverse, (obverse, obverse), (1, 1), O(2, 2, 0.5) is 0.25, which 

occurs 1 of 4 cases. The cumulative probability (C) column presents the 

probabilities added from 0 to 2 in each occurrence: x = 0, 1, 2. 

 The security column (S) corresponds to the previous case of cumulative 

probability (C). The last security (S) of x = 2 is S(2, 2, 0.5) = 0.75, which 

represents a considerable increase over the previous experiment , in which the 

coin was only thrown once: 0.5 (n = 1), which means that the probability of 2 in 2 

(S = 0.75) is much more "significant" (essential , important) than that of 1 in 1 (S 

= 0.5), although both are equal to 100% cumulative probability (C). However, 
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security (s) still does not reach more than 0.75 (75%), which means that there is 

0.25 (25%) of risk, which can occur in pure randomness. Now, we need the three 

parameters: x: occurrences, n: total of the trials and e: expected probability (E): 

 s = S(2, 2, 0.5) = C(1, 2, 0.5) = 0.75 

 In the same way, the security(s) of x = 1 is: 

 s = S(1, 2, 0.5) = C(0, 2, 0.5) = 0.25 

 Let us look at the experiment of three trials (n = 3): 

X Case O(x, 3, 0.5) C(x, 3, 0.5) S(x, 3, 0.5) 

x: 0  (0,0,0) 1/8 = .125 .125 0 

x: 1  (1,0,0), (0,1,0), (0, 0, 1) 3/8 = .375 .500 .125 

x: 2  (1,1,0), (1,0,1), (0,1,1) 3/8 = .375 .875 .500 

x: 3  (1,1,1) 1/8 = .125 1.000 .875 

Table 5: Security (s) in three trials (n = 3). 

 The security (s) of the last occurrence (x = 3) has increased to 0.875 and 

therefore the risk has now decreased into 0.125 = 1 - 0.875. 

 s = S(3, 3, 0.5) = C(2, 3, 0.5) = 0.875 (87.5%) 

 If we bet that the obverse does not come out 3 times in 3 trials, there is an 

87.5% chance of winning the bet, which is the security (s); and the risk of losing 

the bet is 12.5%. Therefore, we should increase security to at least 95% (0.95) 

and, if possible, up to 99%, with 5% or 1% risks, respectively. In this way, we 

lose the bet only 1 of 20 times (5%) or 1 of 100 times (1%).  

 Let us look at the experiment of 10 trials (n = 10): 

X O(x, 10, 0.5) C(x, 10, 0.5) S(x, 10, 0.5) 

x: 0  .001 .001 .000 

x: 1  .010 .011 .001 

x: 2  .044 .055 .011 

x: 3  .117 .172 .055 

x: 4  .205 .377 .172 

x: 5  .246 .623 .377 

x: 6  .205 .828 .623 

x: 7  .117 .945 .828 
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x: 8  .044 .989 .945 

x: 9  .010 .999 .989 

x: 10  .001 1.000 .999 

Table 6: Security (s) in ten trials (n = 10, e = 0.5). 

 Finally, when x = 9, we obtain security (s) by S(9, 10, 0.5) = 0.989, 

greater than 95%, and S(10, 10, 0.5) = 0.999, greater than 99%, which means that 

we can present the figure of 9 between 10 with security (s) greater than 95%, and 

10 between 10 with security (s) greater than 99%. Actually, when tossing the coin 

10 times, if the obverse of the coin comes out 9 times, the total occurrence 

probabilities less than 9 {0, 1, 2, ..., 8} adds up to 98.9%, which is quite 

significant. That is, with the 98.9% security, we can affirm that 9 out of 10 is 

significant (important). It is significant in the sense that the frequency of 9 times 

or 10 times of obverse out of 10 trials of coin toss occurs only with the risk 

probability of 0.010 + 0.001 = 0.011 (1.1%). In the same way, we can affirm that 

10 out of 10 has security of 0.999 (99.9%). Compare the cases of 1 in 1 (50% 

security), 2 in 2 (75%), 3 in 3 (87.5%), and now, 10 in 10 (99.9%). 

 So far, we have seen the mathematical behavior of security (s), which 

depends on the three parameters: x: occurrences, n: total and e: expected 

probability. We have observed its movement according to x and n. Now let us see 

what security (s) is presented according to the change in the expected probability 

(e). The following table shows the security (s) of the occurrences (x) of events 

endowed with the expected probability (e) of 0.1, for example, taking out the card 

"1" within the ten cards of {1, 2, ..., 10}, with replacement6: 

 
6 We use the binomial probability (B) to obtain the security (s): 

 B(i, n, e) = nCi e
i (1 - e)n - i 

 s = S(x, n, e)  = Σ [i=0, x-1] B(i, n, e) 

   = Σ [i=0, x-1] nCi e
i (1 - e)n-i 

   = Σ [i=0, x-1] n! / [i! (n - i)!] ei (1 - e)n - i  

 (s: security, x: occurrence, n: number of trials, e: expected probability) 

 This formula of security (s) is complicated, so we use the Excel 

BINOMDIST function instead (see Appendix, Program-A): 

 s = S(x, n, e) = BINOMDIST(x - 1, n, e, 1) 
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X O(x, 10, 0.1) C(x, 10, 0.1) S(x, 10, 0.1) 

x: 0  .349 .349 .000 

x: 1  .387 .736 .349 

x: 2  .194 .930 .736 

x: 3  .057 .987 .930 

x: 4  .011 .998 .987 

x: 5  .001 1.000 .998 

x: 6  .000 1.000 1.000 

x: 7  .000 1.000 1.000 

x: 8  .000 1.000 1.000 

x: 9  .000 1.000 1.000 

x: 10  .000 1.000 1.000 

Table 7: Security (S) in ten trials (n = 10, e = 0.1). 

 For example, when x = 5, n = 10 and e = 0.1, S(5, 10, 0.1) turns out to be 

0.998, that is, the sum of the occurrence probability (O) of x = 0, 1, 2, 3, 4 is 

0.998. Therefore, when setting the security standard (s) at 0.99 (99%) of the 

occurrences correspond to 0, 1, 2, 3, 4. There is almost never 5 onwards (5, 6,  

7, ...) and there is a low probability of 0.01 (1%). 

 The following table (Table 8) shows the securities (s) according to the 

occurrences (x = 0, 1, 2, ..., 10) and with different expected probability (e = 0.1, 

0.2, ..., 0.9): 

s = S(x, 10, e) e: 0.1 e: 0.2 e: 0.3 e: 0.4 e: 0.5 e: 0.6 e: 0.7 e: 0.8 e: 0.9 

x: 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

x: 1 0.349 0.107 0.028 0.006 0.001 0.000 0.000 0.000 0.000 

x: 2 0.736 0.376 0.149 0.046 0.011 0.002 0.000 0.000 0.000 

x: 3 0.930 0.678 0.383 0.167 0.055 0.012 0.002 0.000 0.000 

x: 4 0.987 0.879 0.650 0.382 0.172 0.055 0.011 0.001 0.000 

x: 5 0.998 0.967 0.850 0.633 0.377 0.166 0.047 0.006 0.000 

x: 6 1.000 0.994 0.953 0.834 0.623 0.367 0.150 0.033 0.002 

x: 7 1.000 0.999 0.989 0.945 0.828 0.618 0.350 0.121 0.013 

x: 8 1.000 1.000 0.998 0.988 0.945 0.833 0.617 0.322 0.070 

x: 9 1.000 1.000 1.000 0.998 0.989 0.954 0.851 0.624 0.264 

x: 10 1.000 1.000 1.000 1.000 0.999 0.994 0.972 0.893 0.651 

Table 8: Security (s) in ten trials (n = 10, e = [0.1, 0.9]). 
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Fig. 1: Security (s) in ten trials. n = 10, e = [0.1, 0.9]. 

 For example, we find 0.349 in the cell of x = 1; e = 0.1: 

 S(1, 10, 0.1) = 0.349 

 When rehearsing 10 times of the event with the expected probability (e) 

of 0.1, the occurrence 1 (x = 1) corresponds to the security (s) of .349 (34.9%). 

The case of 2 occurrences (x = 2) of the same event corresponds to 0.736 (73.6%): 

 S(2, 10, 0.1) = 0.736 

 The concept of security (s) applies to absolute frequency tables, for 

example, Table 1, which we reproduce below (AF)7: 

AF 1200 1250 1300 1350 1400  s 1200 1250 1300 1350 1400 

uoz 3 8 3 11 6  uoz *.963 *.981 .181 .019 .000 

boz 0 3 8 18 35  boz .000 .181 *.981 .526 .758 

voz 0 1 1 23 53  voz .000 .008 .008 .934 #1.000 

Sm 3 12 12 52 94        

Table 9: Absolute frequency (AF) and security (s). 

 For example, the frequency 3 in the sum 3 and 8 in 12 with the expected 

probability of 1/3 (0.333) have the following security: 

 
7 In the security table (s), the sign * corresponds to the figure greater than .95 

and the sign #, to the figure greater than .99. 
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 S(3, 3, 1/3) = .963 (96.3%) 

 S(8, 12, 1/3) = .981 (98.1%) 

which exceeds statistically significant 95% (p < 0.5), but does not reach 99% (p < 

0.1). In this way, we can use the security figure to carry out a statistical test: a 

security test. The function S(8, 12, 1/3) returns the sum of probabilities below the 

corresponding case (x = {0, 1, 2, ..., 7}), of occurrence endowed with the same 

equitable probability of three trials (rows): 1/3 (0.333), based on the assumption 

that the frequencies occur randomly with the same probabi lity on three occasions, 

corresponding to the three forms: uoz, boz, voz. 

 The complementary figure of security with respect to 1 represents the risk 

(R), which corresponds to p-value of the statictical test (security + risk = 1): 

 R(3, 3, 1/3) = 1 - S(3, 3, 1/3) = 1 - .963 = .037 (3.7%) 

 R(8, 12, 1/3) = 1 - S(8, 12, 1/3) = 1 - .981 = .019 (1.9%) 

 The risk of 8 in 12 with probability 1/3, which is a complementary value 

of the security (s), represents the sum of the probabilities of the corresponding 

case and the superior cases: x = {8, 9, 10, 11, 12}, which occupies the upper 

(right) area of the frequency distribution (Table.10, Fig.2)8: 

 
8 Ichihara (1990: 118) explains the probability (P) used in the ratio test by 

binomial probability distribution: 

 P = BINOMDIST(x, n, e, 1) 

 On the other hand, our security(s) is: 

 s = S(x, n, e) = BINOMDIST(x-1, n, e, 1) 

The difference between the two probabilities, P and S in BINOMDIST, is due to 

the difference of the test object: lower (left) probability in P (Ichihara), and 

higher (right) probability in risk (r), complement of security (s): s = 1 - r. 
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x Binom. Accm. 

0 0.0077 0.0077 

1 0.0462 0.0540 

2 0.1272 0.1811 

3 0.2120 0.3931 

4 0.2384 0.6315 

5 0.1908 0.8223 

6 0.1113 0.9336 

7 0.0477 0.9812 

8 0.0149 0.9961 

9 0.0033 0.9995 

10 0.0005 1.0000 

11 0.0000 1.0000 

12 0.0000 1.0000 

Table 10. Fig. 2: Security and risk in security test (x = 8, n = 12, e = 1/3). 

3.2. Expected probability 

 We have observed that security (s) is obtained by the function of S(x, n, 

e): 

 s = S(x, n, e)  … (x: occurrences, n: sum, e: expected probability) 

 However, in analyzing linguistic data, unlike such experiments on the 

coin toss or the taking out of a card (with replacement), the expected probability 

(e) of events from the beginning is generally unknown. The expected probability 

(e) is precisely our objective for obtaining the probabilistic value, from x: 

occurrences (frequency), n: trials (sum) and s: security. That is, we want to know 

what probability is guaranteed in frequency x out of sum n, with the desired 

security (95% or 99%). Now the known parameters are x (occurrences) and n 

(sum). The security (s) is set by the user. 

 Actually, according to the previous formula, the security (s), occurrences 

(x), sum (n), and expected probability (e) are interdependent; that is, if the three 

values are known, the remaining one value is mathematically or algorithmically 

derived from the known three values. For this reason, we elaborate the function 

E(x, n, s) that returns the expected probability (e) from x (occurrences), n (sum) 

and s (security): 
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 e = E(x, n, s)    … (x: occurrences, n: sum, s: security) 

 The function E(x, n, s) returns the expected probability (e) assumed from 

an event that occurs x times in n trials with security (s), calculated by binomial 

probability distribution. With these three parameters, the expected probability (e) 

is returned by a function E that we will explain later (Appendix; Program-B, 

Table-A, B): 

 e = E(5, 10, 0.99) = 0.150. 

 The following table shows the expected probability (e) of the events of 10 

trials (n = 10), according to occurrences (x) from 1 to 10 (x = 1, 2, ..., 10), and 

with different securities (s): s = 0.95, 0.99, 0.999. In this table we observe that the 

greater the occurrence (x), the greater is the expected probability (e). For example, 

in the security (s) of 0.99, the expected probability (e) of x = 1 is 0.001, while that 

of x = 10 is 0.6319: 

E(x, n:10, s) s: 0.95 s: 0.99 s: 0.999 

x: 1  0.005 0.001 0.000 

x: 2 0.037 0.016 0.005 

x: 3 0.087 0.048 0.021 

x: 4 0.150 0.093 0.050 

x: 5 0.222 0.150 0.090 

x: 6 0.304 0.218 0.141 

x: 7 0.393 0.297 0.205 

x: 8 0.493 0.388 0.282 

x: 9 0.606 0.496 0.376 

x: 10 0.741 0.631 0.501 

Table 11: Expected probability (e) in ten trials (n = 10). 

 
9 We do not expose the case with x = 0, since the function E always returns 0. 
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Fig. 3. Expected probability (e) in ten trials (n = 10). 

 At the same time, we confirm that the increase in security (s) causes a 

general decrease in the expected probability (e). For example, E(5, 10, 0.95) = 

0.222, while the same with the security (s) of 0.99 is 0.150 and the same with the 

security of 0.999 is 0.090. 

 Suppose we have had 2 success (x = 2) in 10 experiments (n = 10). With 

this data, however, we cannot expect 20 successes in 100 future experiments. Let  

us see how the expected probability (e) are presented by increasing the number of 

experiments n = 10, 100, 1000, ...: 

n E(n*.2, n, .95) E(n*.2, n, .99) 

10 .037 .016 

100 .137 .116 

1,000 .179 .171 

10,000 .193 .191 

100,000 .198 .197 

1,000,000 .199 .199 

10,000,000 .200 .200 

Table 12: Expected probability (e) in n tests (n = 10, 100, 1000, ...). 
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Fig. 4. Expected probability (e) in n tests (n = 10, 100, 1000, ...). 

 In the previous table with the condition that the security (s) is 0.95 (95%), 

when obtaining two successes in 10 trials, its expected probability (e) is 0.037 

(3.7%) and is very far from the probability of success of 0.20 (20%). When n = 

10,000 it reaches e = 0.193 (19.3%). From n = 10 000 onwards, the increase in the 

expected probability (e) is reduced. Finally, we obtain e = 0.20 (20%) when we 

reach n = 10,000,000. This characteristic of the expected probability (e) is 

important since through it we can appreciate what theoretical probability there is 

in each case of 2 in 10, 20 in 100, 200 in 1000, and so on. We are struck by the 

first cases where the magnitude of the base (10, 100) is considerably reduced, 

which causes the low expected probability: 0.037. This means that when the 

expected probability (e) = .037, two successes in 10 trials has 95% security (s). In 

this sense the function of expected probability (e), E(x, n, s), is inverse function 

of security (s), S(x, n, e): 

 e = E(2, 10, 0.95) = 0.037 

 s = S(2, 10, 0.037) = 0.95 

3.3. Multiplier 

 We calculate the probabilistic frequency (PF) in the following formula: 

 PF = e * m  … (e: expected probability, m: multiplier) 

 The probabilistic frequency (PF) is obtained by the expected probability  

function E(x, n, s) in combination with the multiplier (m). 

 PF = e * m = E(x, n, s) * m 
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 Conveniently, the amount of the multiplier (m) will be constant in 

rounded form in order to maintain the same standard, for example 1,000 or 

1,000,000 in accordance with the magnitude of the data10. The following table 

shows the probabilistic frequency (PF) with 95% security, corresponding to the 

frequency (x: [10, 100]) and the base (n: [10, 100])11: 

PF n:10 n:20 n:30 n:40 n:50 n:60 n:70 n:80 n:90 n:100 

x:10 741  302  193  142  113  93  80  69  62  55  

x:20  861  501  361  283  233  198  172  152  137  

x:30   905  613  474  387  328  284  251  225  

x:40    928  684  554  466  403  355  318  

x:50     942  734  612  527  463  414  

x:60      951  770  658  576  513  

x:70       958  797  694  616  

x:80        963  819  723  

x:90         967  836  

x:100                   970  

Table 13: Probabilistic frequency (PF). s = 0.95, m = 1000. 

 

Fig. 5: Probabilistic frequency (PF). s = 0.95, m = 1000. 

 
10 When we want to know the probabilistic percentage (PP), that is to say, the 

percentage guaranteed with the security of 95% or 99%, the multiplier must be 

100: PP(3, 3, 0.95) = E(3, 3, 0.95) * 100 = 0.368 * 100 = 36.8 (%). This means 

that the probability of 3 out of 3 is not 100%, but 36.8%, with the security (s) of 

95% (0.95). 
11 For cases of n = [1, 10], [10, 100], [100, 1000], with s = 0.95, 0.99, see 

Table-A and Table-B in Appendix. 
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 The lines of the graph (Fig. 5) show the monotonous downward trend, so 

we can interpolate the figures between e.g. x:10 and x:20 in n:20 to approximate 

the probabilistic frequency of e.g. x:12 in n:20 by 302 + (861-302) * 2/10 = 414. 

4. Application 

4.1. Spelling variants of «voz» 

 We now turn to verify the usefulness of the probabilistic frequency (PF) 

applied to two specific cases of Spanish diachrony. The first case deals with 

variant spellings of Spanish word «voz» ('voice'), which we have explained in 

section 2, where we have seen that the relative frequency (RF) is not convenient 

to correctly evaluate the frequency of 3 within 3 at 1200 (=100.0 %), which 

exceeds the frequency of the same word in 1250 (8 within 12 = 66.7%): 

AF 1200 1250 1300 1350 1400  RF (%) 1200 1250 1300 1350 1400 

uoz 3 8 3 11 6  uoz 100.0  66.7  25.0  21.2  6.4  

boz 0 3 8 18 35  boz 0.0  25.0  66.7  34.6  37.2  

voz 0 1 1 23 53  voz 0.0  8.3  8.3  44.2  56.4  

Sm 3 12 12 52 94  Sm 100.0 100.0 100.0 100.0 100.0 

Table 14a, b: Absolute frequency (AF) and relative frequency (RF) of uoz, boz, voz. 

 The similar situation is also not solved in the normalized frequency (NF) 

by 100,000 words, where uoz in 1200 continues to exceed that of 1250 (38.8, 

22.2)12: 

AF 1200 1250 1300 1350 1400  NF. 1200 1250 1300 1350 1400 

uoz 3 8 3 11 6  uoz 38.8  22.2  7.3  16.9  6.2  

boz 0 3 8 18 35  boz 0.0  8.3  19.5  27.7  36.4  

voz 0 1 1 23 53  voz 0.0  2.8  2.4  35.4  55.2  

T 7 736 36 052 40 957 64 999 96 059        

Table 15a, b: Absolute frequency (AF) and normalized frequency (NF) of uoz, boz, voz. 

 If we resort to the probabilistic frequency (PF) with the security of 95% 

or 99% (Table 16a,b), for 1000 words, the relative importance of uoz in 1250 

stands out (391, 302) in comparison with the same in 1200 (368, 215): 

 
12 TW: Total of words. 
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PF: s = .95 1200 1250 1300 1350 1400  PF: s = .99 1200 1250 1300 1350 1400 

uoz 368 391 72 123 28  uoz 215 302 39 97 19 

boz 0 72 391 237 289  boz 0 39 302 200 259 

voz 0 4 4 324 474  voz 0 1 1 282 439 

Table 16a, b: Probabilistic frequency (PF) with security (s) of 95%, 99%. 

 The last two tables describe the frequency guaranteed by 95% security (s) 

(Table 16a) or 99% security (Table 16b), which means that 3 in 3 does not 

represent 100% in any way, but only 36.8% with the security of 95%, or 21.5% 

with 99% security. Naturally, the probabilistic frequency value is decreased by 

increasing the security (s). 

4.2. Combination of preposition and article 

 In Romance languages, Rhaeto-Romance, Italian, Portuguese, Catalan, 

French and Spanish, except for Romanian, there are many contractions of 

preposition and definite article. Within them, Spanish has only two forms del ('of 

the') and al ('to the') and, in other combinations, the two words are separated: de 

la ('of the'), a la ('to the'), en el ('in the'), and so forth. In the studies of general 

linguistics and history of the Spanish language in particular, it is explained that 

the forms of de el and a el have contracted into del and al by their frequent usage 

(Bybee 2007: 330; Elvira 2015: 18). 

 However, in the CODEA corpus from 1200 onwards there are no separate 

forms (de el and a el)13, the starting point of the supposedly frequent contraction, 

except in an unusual way in 1500, 1600, 1700. On the other hand, for the other 

combinations, a la, a las, de la, etc., numerous examples are found in both united 

and separated forms: 

AF 1200 1300 1400 1500 1600 1700 

de el 6 2 0 19 51 16 

del 1920 1829 2247 2858 1358 426 

de la 309 110 145 370 451 171 

dela 957 992 1303 1590 427 171 

T: words 224,708 230,383 261,564 287,380 125,366 52,938 

Table 17: Union and separation of preposition and article. Absolute frequency (AF). 

 
13 https://lecture.ecc.u-tokyo.ac.jp/~cueda/lyneal/codea.htm 
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 We believe that from the historical point of view there have been no such 

processes of contraction de el > del, a el > al. If the forms la, los, las with the 

apheresis of initial e (ela, elos, elas > la, los, las) are due to the combination with 

preceding prepositions, dela, delos, delas > de la, de los, de las (Menéndez Pidal, 

1926: 331), especially at the combination with the preposition «de», there should 

have been the united forms of the dela, delos, delas before the birth of the current 

forms of the definite article: la, los, las. Naturally, the formation of del and al 

must coincide with the united forms: dela, delos, delas; ala, alas. Therefore, we 

think that the contracted forms existed from the beginning of the history of the 

Spanish language and are not products of the contraction of frequent separate 

forms, in accordance with other Romance languages. These forms have passed the 

history of separation (dela > de la), rather than of contraction (de la > dela, de el 

> del), in which only two forms, del, al, remainded unchanged in united form 

(Ueda 2017). 

 To make the general observation of the tendency of the separated and 

united forms, we use the absolute frequencies (AF) just seen (Table 17). However, 

the total numbers of the words of each subcorpus of every 100 years in CODEA 

corpus are different (T: words). Therefore, from the absolute frequencies and the 

total word frequencies, we calculate the following probabilistic frequencies 

(multiplier = 100 000): 

PF 1200 1300 1400 1500 1600 1700 

de el 12 2 0 43 318 190 

del 8,228 7,637 8,296 9,642 10,356 7,419 

de la 1,249 405 481 1,179 3,324 2,835 

dela 4,035 4,084 4,757 5,307 3,140 2,835 

Table 18: Probabilistic frequency (PF). s = .95, m = 1,000,000 words. 

 We look at the probabilistic frequency (PF) of de el in 1500, where it is 

significantly lower (= 43) than its PF in 1600 (= 318) and 1700 (= 190). In the 

absolute frequency (Table 17), the figure of 1500 (19 occurrences) was recorded 

higher than in 1700 (= 16). However, the trend in the probabilistic frequency is 

inverse, that is, they are higher in 1600 and 1700, which can be negative evidence 

of the supposed contraction process since the contraction process assumes that the 

separate forms would be more frequent in the previous dates than in the later 

ones. 

 These observations do not vary either in the following normalized 
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frequencies (NF), since the bases of division are large and do not offer significant 

differences in 1600 and 1700: 

NF 1200 1300 1400 1500 1600 1700 

de el 27 9 0 66 407 302 

del 8,544 7,939 8,591 9,945 10,832 8,047 

de la 1,375 477 554 1,287 3,597 3,230 

dela 4,259 4,306 4,982 5,533 3,406 3,230 

Table 19: Normalized frequency (NF) per 1,000,000 words. 

 When comparing the probabilistic frequency (PF: Table 18) and the 

normalized frequency (NF: Table 19), the NF of de el in 1600 and 1700 (407, 

302) are much higher than the PF (318, 190). Despite these differences, the 

general observation does not vary substantially. The use of the NF does not cause 

a problem when dealing with the data of large bases but certainly does in the data 

of the small bases (Table 15b). On the other hand, the PF does not produce 

problems both in the data of small bases (Table 16a, b) and those of big bases 

(Table 19). We can affirm that PF is robust in the sense that it applies to both 

types of data, with small and big bases. 

5. Conclusion 

 Within several probability distributions treated in the statistics course, 

the binomial distribution is basic and easy to understand even for students of 

human science with fundamental knowledge of the concept of the probability 

treated in the high school mathematics. However, its ease of treatment does not 

necessarily imply a reduction in importance in the frequency analysis. On the 

contrary, the binomial distribution is essential to approach the world of statistical 

probability and guarantees its value when calculating the security or risk ratio 

(p-value) of individual frequency (3.1). 

 The percentage simply does not guarantee the security of the frequency, 

for example, the success of 80% is quite doubtful in case of only 4 successes in 5 

trials. The probabilistic frequency implies the educational utility so as not to be 

deceived by the apparently high percentage. We are always cautious about the 

relative frequency with a reduced base. Now with the probabilistic frequency, we 

can calculate to what extent of frequency it is allowed to infer with the 

guaranteed security based on the binomial probability. The success of 4 times in 5 
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trials does not guarantee 80% success, but only 34%, a statement made with the 

security of 95%: E(4, 5, 0.95) = 0.343 (34.3%). We have to be careful when an ad 

only puts the success rate in percentage without base (population) or when we see 

the base with small numbers. 

 We believe we have shown that probabilistic frequency offers a solution 

to the problem found in the absolute, relative and normalized frequencies, widely 

used not only in corpus linguistics but in all sciences and daily life dealing with 

the frequency of phenomena in general. The way to evaluate the probabilistic 

frequency with a high degree of security (95%, 99%) is adequate when observing 

the figures within the reduced population and/or comparing the figures with 

highly distant bases. 

 On the other hand, the expected probability, the basis of the probabilistic 

frequency, naturally should not be taken as a absolute and constant value, as well 

as other frequencies treated in this study (absolute, relative and normalized 

frequency), since all these values are the figures observed in the limited data. If 

the spelling <u> is presented in 1200, 3 out of 3, its probabilistic percentage (s. = 

95%) is only 36.8%. However, this does not mean that it will always be presented 

in other documents in 1200 with the probability of 36.8%. The expected 

probability is a value guaranteed with the security of, for example, 95%. It can 

also present other higher figures, although with less security, or lower figures, 

with more security. In this sense, the probabilistic frequency should be used to 

evaluate past results, for example, football or baseball notes, rather than to infer 

the future success rate in educational methods, medical treatments , sports, etc. 

We usually analyze historical or present documents rather than predict the future 

of linguistic situation. 
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Appendix 

Program-A: Security 

 The function S, on receiving x (frequency), n (total), e (expected 

probability), sel (0, 1), returns s (security): 
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Function S(x, n, e) 'Security (Ueda 2017) 

'(x: frequency, n: sum, e: expected probability)  

 If x = 0 Then S = 0 'Definition 

 If x > 0 Then S = Application.BinomDist(x - 1, n, e, 1) 

End Function 

Program-A: Security. S. Excel VBA. 

Program-B: Expected probability 

 The function E, on receiving x (frequency), n (total), s (security) returns e 

(expected probability). In the program (Microsoft Excel VBA), we have used the 

binary search technique with the application of the encounter on the r ange 

(maximum-minimum). The sequential search is impracticable for the time it takes 

to reach the meeting.  

Function E(x, n, s) 'Expected probability (Ueda 2017)   

 '(x: ocurrence, n: trials, s: security) 

 Dim i, k, p, mn, mx, c, lw, up: E = 0: k = 0 

 If x = 0 Then Exit Function 

 p = 10 ^ 6: mn = 0: mx = p: lw = s - 1 / p: up = s + 1 / p 

 'p: precision, mn: min, mx: max in binary search, lw(er), up(per) 

 For k = 1 To 1000 

   i = (mx + mn) / 2 'i: Midpoint between mx and mn 

   E = i / p 'E: Candidate of the expected probability 

   c = Application.BinomDist(x - 1, n, E, 1) 

   If c < lw Then 'If c does not reach lw … 

     mx = i 'Lower the maximum of search to the midpoint (i) 

   ElseIf c > up Then 'If c exceeds up ... 

     mn = i 'Raise the minimum of search to the midpoint (i) 

   Else 'If c is between lw and up … 

     Exit For 'Exit the loop 

   End If 

 Next 

End Function 

Program-B: Expected probability. E. Excel VBA. 
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PF n:1 n:2 n:3 n:4 n:5 n:6 n:7 n:8 n:9 n:10 

x:1 50  25  17  13  10  9  7  6  6  5  

x:2  224  135  98  76  63  53  46  41  37  

x:3   368  249  189  153  129  111  98  87  

x:4    473  343  271  225  193  169  150  

x:5     549  418  341  289  251  222  

x:6      607  479  400  345  304  

x:7       652  529  450  393  

x:8        688  571  493  

x:9         717  606  

x:10                   741  

 

PF n:10 n:20 n:30 n:40 n:50 n:60 n:70 n:80 n:90 n:100 

x:10 741  302  193  142  113  93  80  69  62  55  

x:20  861  501  361  283  233  198  172  152  137  

x:30   905  613  474  387  328  284  251  225  

x:40    928  684  554  466  403  355  318  

x:50     942  734  612  527  463  414  

x:60      951  770  658  576  513  

x:70       958  797  694  616  

x:80        963  819  723  

x:90         967  836  

x:100                   970  

 

PF n:100 n:200 n:300 n:400 n:500 n:600 n:700 n:800 n:900 n:1000 

x:100 970  440  288  215  171  142  122  106  94  85  

x:200  985  619  458  363  302  258  225  200  179  

x:300   990  712  563  466  397  347  307  276  

x:400    993  768  634  540  470  417  374  

x:500     994  806  685  596  528  474  

x:600      995  834  724  640  574  

x:700       996  854  754  675  

x:800        996  870  778  

x:900         997  883  

x:1000                   997  

Table-A1, A2, A3: Probabilistic frequency (PF). s = .95, m = 1000. 



26 

PF n:1 n:2 n:3 n:4 n:5 n:6 n:7 n:8 n:9 n:10 

x:1 10  5  3  3  2  2  1  1  1  1  

x:2  100  59  42  33  27  23  20  17  16  

x:3   215  141  106  85  71  61  53  48  

x:4    316  222  173  142  121  105  93  

x:5     398  294  236  198  171  150  

x:6      464  357  293  250  218  

x:7       518  410  344  297  

x:8        562  456  388  

x:9         599  496  

x:10                   631  

 

PF n:10 n:20 n:30 n:40 n:50 n:60 n:70 n:80 n:90 n:100 

x:10 631  239  151  110  87  72  61  53  47  42  

x:20 
 794  439  312  243  199  168  146  129  116  

x:30 
  858  559  426  346  291  252  222  198  

x:40 
   891  637  509  426  367  322  287  

x:50 
    912  692  572  489  428  381  

x:60 
     926  733  620  540  479  

x:70 
      936  764  659  582  

x:80 
       944  789  691  

x:90 
        950  809  

x:100                   955  

 

PF n:100 n:200 n:300 n:400 n:500 n:600 n:700 n:800 n:900 n:1000 

x:100 955  416  271  201  160  133  113  99  88  79  

x:200 
 977  600  441  349  289  247  215  191  171  

x:300 
  985  696  547  452  385  335  297  267  

x:400 
   989  755  620  527  458  406  364  

x:500 
    991  795  673  584  516  463  

x:600 
     992  824  713  629  563  

x:700 
      993  845  744  665  

x:800 
       994  862  769  

x:900 
        995  876  

x:1000                   995  

Table-B1, B2, B3: Probabilistic frequency (PF). s = .99, m = 1000. 


